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The research reported in this document deals with & multiple

state, staged failure phenomenon with state specific covariates char-
acteristic of the states. Different types of censoring was taken into
consideration. The classical maximum likelihood estimation is compared

with Cox's partial likelihood estimation for efficiency, since maxi-
mum likelihood estimation of covariate effects depends on the baseline
failure rate, while partial likelihood estimation does not. Results of

analysis as well as simulation are presented.

Part of this work was supported at the University of
Southern California by a grant from the Air Force Office of Scientific




Malti State Cox MNodel. is of Survival

The vast majority of reliability analyses for components and/or
systems assume that the equipment under consideration is in either one of
two states: Punctioning or Failed. In many situations one can measure and
distinguish between varicus "levels of performance” for both the system
and its components. Current literature is largely devoted to the proba-
bilistic aspects of both static and dynamic multistate systems. PFarallel
investigations in clinical data analysis deal with reliability under the
analogous concept of survival analysis.

In this section & model for the analysis of survival data of a staged
failure phenomena with competing risks is considered. The model is a mul-
tiple state extension of the proportional hazard rate model of Cox (1972).
It uses the theory of Markov processes as applied to staged failure phenom-
ena described, for example, in Chiang (1968). Cox's method of partisl like-
lihood was extended to cbtain the estimates of covariate effects. Maximum
l1ikelihood estimation of the intensity matrix is developed. Using the
results of Aalen (1975), the consistency of the estimator for the integrated
intensity matrix is established. The asymptotic variance and the weak con-
vergence to normality of the estimator is obtained. An illustration apply-
ing the model to0 a multiple transition situation is given.

1. Introduction

In the following, we consider the stochastic modeling of staged
failure phenomena using the theory of Markov processes. Complicating
the statistical picture is a set of cbserved covariates on each item
ssxpled. The motivation for this wvork came from & desire to solve




certain problems that arise in the study of cancer data. Typically,
for each patient in a cancer study, there exist a set of measured
front end variables (e.g. initial white blood cell count, age, sex,
etc.) as well as a set of periodically updated medical observations
on each patient. The problem is to properly account for the effect
of these observed covariates on the transition probabilities between
various stages of the disease. This situation is most often modeled
using just two states: disease and death. Cox (1972) considers

this situation and uses the parametric model
A (t) =X (t) exp [87s,(t)]) , (1.1)

where Ai(t) is the failure rate (hazard function) for the ith patient,
'i(t) is the ith patient's observed set of covariates, and 8 is the
transpose of the vector representing the effect of the covariates.
The function ko(t) is a reference failure rate and may be considered
as the failure rate of a patient with covariate vector zi(t) = 0.
I1f covariates are measured as deviations from a mean, then xo(t) is
an "average" failure rate. In a study where the determination of the
effect of covariates is of paramount importance, then the method of
partial likelihood (Cox 1975) is a very useful procedure for estima-
ting the vector B in that it results in a formulation independent of
the unknown Ao(t).

In this paper, we consider the multiple transition extension of
a parametric covariate model in an analysis of life data (e.g. the
Cox Model) using the theory of Markov processes applied to staged

failure phenomena as described for example in Chiang (1968). The

a




failed states (e.g. death) in such a model will of course be absorb-
ing states. Competing risk models can be handled by allowing for
more than one death state where each death state corresponds to a
different cause of death. For example, in the illustration discuss-
ed in Section 5, patients undergoing porta-caval shunt surgery to
correct hepatic bleeding can at any particular time, either reside

in one of two treatment states, (alive-free of hepatitis, or alive-
having had hepatitis) or in one of three absorbing states (death from

bleeding, death from other cause, or withdrawn-lost to follow-up).
2. STAGED FAILURE PHENOMENA: MARKOV PROCESSES

We consider the situation where each patient in a population
must exist in one of several states. The states will be comprised
of transient states (i.e. illness states such as various stages of a
disease, various complications, etc.) and absorbing states (i.e.
death states). Complicating the analysis of many clinical studies
is the censored state, which here may be treated as another absorbing
state. The Markov assumption is that the probability distribution
over future states a patient might be in, is completely determined
by his current state. Specifically it does not depend upon how the
patient arrived at his current state or how long he has been there.
(This statement can be modified if the state space is expanded to in-
clude these properties).

Let 479/ denote the set of mutually exclusive states i, ic 4%/,

(o)

In our applications the cardinality of 4 will be quite small

(five for the liver patient example). The probability of being in

o




state 7 at time ¢t given that one was in state 7 at time 1,T < ¢t is
denoted by the function Pij(T,t). The fact that a patient must occupy
some state for each time ¢ and that the states are mutually exclusive

is characterized by the relations

) P,;(t,t) = 1 for all 1<t, and for all i, (2.1a)
J- N

and Pij(t,t) = Gij’ (2.1b)

where Gij is the Kronecker delta.

The intensity matrix Vij(t) is given by

(1,¢t) | (2.2)
t=T.

)
i

?
vij(r) = 3%

dJ

From (2.1a), the intensity matrix satisfies

v..(t) = 0 for all i, t. (2.3)
. td
Jd

The intensity has the interpretation of being proportional to the
probability of transition from‘state i to state J at time ¢.
Specifically,

Pij (t,t+h) = Gij +v,. (t}d + o(4), (2.4)

tJ

where o(A) is such that

1im o(A)/A = 0
A+0 (2.5)

Letting P(1,t) be the matrix (Pij(T.t)) and v(t) be the matrix

(t)), we have the following well known relationships between P

(vid
and v,
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I. Chapman-Kolmogrov forward differential equation:

'
BEPLE) . per,e) vet); st (2.6)
with initial condition Pl(t,t) = I. (2.7)

I11. Chapman-Kolmogrov backward differential equation:

32 P(t,t) = -V(1) P(1,t); 1<t (2.8)
with "initial condition® P(t,t) = I. (2.9)

The products PV in (2.6) and VP in (2.8) are the usual matrix inner

products. The integral equation form of (2.7) to (2.9) is

P(1,¢) = I + [ Pr1,e) dB (1,8), (2.10)
T
where B(t,t) = [t v(s) ds. (2.11)
T

For a further discussion of the development of (2.6) through (2.9) see
Chiang (1968), pp. 116-120.

In the usual application of the above, the intensity matrix
(vij(t)) is assumed to be almost everywhere continuous so that equa-
tions (2.6) and (2.8) involve no irregularities. It will be seen
later, however, that useful results are obtainable if we let vij(t)

have the form

n s 0
J
vij(t) = gZ] 'ij! G(t-eijl)’ (2.12)

where 6( ) is the Dirac delta function and the 5i3z are isolated
points on the real line. (In particular, this is the natural "non

parametric parameterization” of Aa(t) in (1.1). See Cox (1972)).
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Equation (2.12) says that i+j transitions are only allowed to occur

at the isolated points Eijz’ l'z""’”ij'

Computations are facilitated by ordering the Eijz for all ije.

Let the ordered Eijz

Let P(u;,uk) be the probability transition matrix for the times

be relabeled 1P with u1<u2<...< ¥

Ve = Eijl' u; =l - € with o<e<uk = W_z- It can be shown that
P(u;,uk) is the identity matrix except for the (%,j)th off diagonal

element and the ith diagonal element which are given by

Pij(u;,uk) = ] -exp ('aijl)’ (2.12a)
and Pii(”k'”k) = exp {°‘ijl)’ (2.12b)

respectively. The Chapman-Kolmogrov equations imply for,

U, _q S, <y, <y ee.SU, <t, <y
k1 1 1 kl k1+1 k2 2 k2+1,
kg
that P(t,,t,) = ll Plui,u,.). (2.13)
1t = e
: 1

The next section discusses the parametric estimation of the co-
variate effects. The following section discusses the nonparametric
estimation of the transition probabilities themselves given knowledge

of the covariate effects.
3. COVARIATE PARAMETERIZATION AND LIKELIHOOD ESTIMATION

From (2.7) or (2.8), it is seen that the transition probability

matrix P is completely determined by the intensity matrix v. The

parameterization of the covariate effect is thus facilitated through
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a parameterization of V. Following (1.1), th- Cox model parameteri-

zation for the pth patient for a transition from state i to state J

is taken as

() 1y o o(0) . "
Vi3 (t,uij) Vi (t) exp [uij zp(t)], i$J, (3.1)

where a, is a vector of length ¥, the number of covariates in the

J
vector zp(t). Note the constraint in (3.1) that < not equal j. For
the case i=j, the parameterization of vég)(t) follows from (2.3).
That is,
(p) - - (p) .
vl (t) ) vigl (tiagg). (3.2)

Jti

Likelihood estimation in both the case in which the vij(t) are
parameterized and the case in which they are left arbitrary is des-
cribed in Fertig, Murthy, et al (1979). Here, we only consider the
latter situation.

Let Hb(t) be the right continuous state function for the pth
patient. We observe WP(T) on [O,Tp] . Here we take Tp to be a non-
random study time established apriori for the pth patient.

If the patient leaves the study because of death or is censored
unexpectedly, he will be observed in that death or censored state
until Tp. This approach explicitly takes into account a censored
state that may be entered only randomly. Presumably, the transition
probabilities of interest are those that would exist in the hypothe-
tical situation of no censoring. Estimation of these probabilities
is the thrust of the Kaplan-Meier estimator in the three state problem
(l1ife-death-censored). Fleming (1978) describes a multiple state ex-

tension to the X-M estimator that can be used in the current situation.




The state functions wp(r) are each seen to be step functions
on [o,rp] with a finite number of jumps.

Cox's method of partial likelihood will be used to estimate the
°ij in (3.1). In this situation, one may specify as the conditioning

. (j-1 (4 . . . ..
variates (S J ),X‘J)), in Cox's: notation, as respectively the risk

set at each transition time (defined below) and the information that
a specific transition occurred. With this approach we need to record:
(1) Ordered event times: t1<...<tm. (2) Individuals undergoing
transition: il,...,im. (3) State being left: TyseeesT o (4) State

being entered: y ,:..,y . (5) "Risk" sets: R_ (t.),...,R_(t_). The
1 m z, 1 z, m

sets Rx.(t) for arbitrary ¢t are defined by
Jd

ij(t) = { plwp(t-) =z, }.

Each R_ (t) contains as members all patients who are at "risk" of
J
leaving state xj'

Cox's partial likelihood is then
M

L = || exp (a” z. )/ 1] exp (a” z,) . (3.3)
. y. "1, x.y. k
j=1 J7J kst.(tj) J J

The jth factor in the partial likelihood in a sense measures the
likelihood that it is individual ij who undergoes the transition
I ¥ at time tj given that some individual in Rz.(tj) must undergo
this transition. (This likelihood is written for the case in which
there are no ties).

A useful feature of (3.3) is that it can be factored into in-

dependent expressions for each observed transition z+y. Thus, the




estimation of 2y for given (x,y) can be performed independently of

the estimation of uz,y, for x4z~ or y=y~. This factorization also
holds for the information matrix based on (3.3). Specifically we

have, for the gth component of o

y’
%—%E-E = ) [zi(q)- ) 2% (@ exp (a” z,)/ )) exp (a” zk)]
xyq t.eT ¥4 ker_ (t.) Yy kerR_ (t.) *y
¥ J Txy x. g ., J
d J (3.4)
where sz ={tj | T; =z and y, =y }.

For specified z,y the expression (3.4) for all q comprise the usual
set of likelihood equations for estimating the q dimensional parameter
vector of the Cox model when only two states z and y (besides the
censoring state) are possible.

It can be seen from (3.4) that all off diagonal terms of the in-
formation matrix involving different transition states will be zero.
Thus, the information matrix will be block diagonal with the (x,y)

block given by

2
9° 1n L (p)_(q) -
1729 = . = ] ‘ )) z z exp (a:. 2,)
zy d9a__ (p) 3a_ (q) ) )k k ij “k
xy xy thsz lkEngtJ)
) exp (a7, 2,) - 2P/ exp (a;y z,)
KeR_(t.) +J ker_(t.) P
@5 J ®;d

2

(Q) .
1 3% exp (a 5) / (]
y k
( kERz(tj) kERx(tj)

exp (a7, ) )l (3.5)
J J

|

0f course, we only need consider those vectors uzy and corres-

ponding Izzq for those transitions of interest. These ideas will be




made clearer in the next section.

Estimation of the transition probabilities require an estimation
procedure for the vi§°)(t) for each i4j of interest. Kaplan and
Meier (1958) provide the nonparametric estimate in the three state
problem with no covariates. Fleming (1978) gives the procedure for
the multi-state case. Cox (1972) provides an adaptation of the
Kaplan-Meier estimate when covariates are present. The estimator
proposed here is the simple extension of the above procedures to the
case where covariates exist in a multi-state environment. It is
convenient to obtain the estimator as a maximum likelihood estimator
in the space of all functions whose centers form a set with no cluster
point. This procedure provides an estimator with certain intuitively
nice properties. Specifically, the observed conditional frequencies
of the sample will match those of the estimator's. Moreover, it re-
duces to the Kaplan-Meier estimate when there are only three states.
It is recognized that the fact that the estimator is maximum likeli-
hood may provide no advantage since we will be treating a case where
the number of parameters and the number of patients on study grow
at the same rate. Even though the estimation procedure seems
to focus on the intensity matrix, the transition probabilities are of
primary interest. This is fortunate since the presentation of a
Dirac delta function as an estimate of intensity in its own right
would be quite unsatisfactory in most situations. However, the transi-
tion probabilities essentially involve integrating over the estimated

intensities and therefore, a great deal of smoothing is effected.

This corresponds to the familiar case of deriving the empirical

10




distribution function as a maximum likelihood estimator. 1Its den-
sity is of course composed of delta functions.
With the above considerations in mind let us write the intensity

for the pth patient as

vij(t;'p) - z)s;A.. a4 s(t'gi.jl) exp (G-Ej zp), 5.6)

+J for i#4J

where Aij is the set of indices, £, for which a transition is possible.
The set iij Aij which forms the set of centers of the Dirac delta
functions, is assumed to have no cluster point. For a given clini-
cal trial we can only consider the Eijn
Thus we may take izj Aij as a finite set.

which are less than msx Tp.

The data that are observable with model (3.6) are given in the
following table:
Table I: Observable Data with Model (3.6)

Event Times: Eijl’ Eijz""’ Eijn
Risk Sets: Ri(eijz),..., Ri(aijn)

Transition Sets: Sij(zijl)""’ sij(gijn)

The above table is constructed for each i and j such that i4j. The
risk set R.(t) is the set of all patients in state < at time t~.

The transition set sij(t) is the set of all patients that undergo an
i+j transition at time ¢. Either or both of these sets may be empty
at any t. Thus if no patient undergoes a transition from i+j at

t = &, say, then l[sij(E )] = 0. As in (2.12b) the probability

ije
that a patient in Ri(Eijz) survives the i+j transition may be written

11




(3.7)

as (E E::95 8.) = exp [-a, ijn ®*P (a’

tjL’ “ige 4 i P)]

The probability of a transition is one minus this quality. With

(3.7) it is simple to write the likelihood of the data in Table 1

as nij

L = II ‘ li || (1-exp atgi)))

£,J31i45 =1 pesij(gijl)

(p)
exp ("tal) , (3.8)
peR (E ) - S (Etal
(p) -
where ‘ijl =2, exp (aij 8p). (3.9)

We will proceed with estimation of LFEY) in the case that the

s vectors are known. The partiagl likelihood estimates of these
vectors may be used since these estimates were derived independently

of the a. iin

To estimate the a. ije’ we must maximize (3.8). If R, (Ew2 is

empty, then the corresponding a:ie cannot be estimated. By conven-

tion we take it to be zero. If R (E..,) is non-empty but sij(gijz)

iJ8

is, we see from (3.8) that the maximum occurs for a. 0. Thus,

iJ2
we need consider only those times Eijl for which eve;ts actually
occurred. In order to emphasize this fact we relabel the Eijl as
tij! and consider them "event'" times. Since we are estimating in-
tensities but are primarily interested in transition probabilities,
it is clear from the decoupled nature of the log of (3.8) that those

transitions that are not going to be included in the final state

12




space (e.g. transitions into a censored state) may be ignored.
We are now reduced to the case where for each tijl’#(sij(tijz))’z
and Ri(tijl) is non-empty. Setting the derivative of the log of

(3.8) with respect to 250 to zero, we have

2. exp (u%iizp) exp (-'iil exp (a{i_fp))
pesij(tijz) 1 - exp (-.ijl exp (ugj zp))
= exp (a’. z_) for all <4j, and &. (3.10)
€ER,(t,.,) = S.::(t..,) LCAN 2
PER; T4 id' Fige

In the case of "ties" at tijz’ equation (3.10) may be solved itera-

tively for ;; In the important case of no ties, we have the follow-

je
ing easily solved relation for ;;JL:

exp (-'ijl exp (uij zpijz))
= ] - exp (a>.2_ )/ Z exp (a:. z_J, (3.11)
3 Pijz PER (t;2y) RO

where Pijs is that patient in sij(tijz)'

It can be seen from (3.11) that in the case of no covariate

effects (uij = 0),we have

1
- (3.12)

exp ("ijl) =1 - rpP

where 'ijl is the number of patients in Ri(tijz)‘ Expression (3.12)
leads to the usual Kaplan-Meier estimate of the survival function
in the three-state no covariate case. The estimator given in (3.11)

is identical to that proposed by Kalbfleisch and Prentice (1973) in

.13




the three state problem (life-death-censored). They develop their

estimator by considering the grouping of continuous time to failure

data.
From (3.11), we see that ;;jz is a function of the covariates
of the patients in the risk set Ri{tijz)' As mentioned earlier, the

estimates :ijz will in practice be found using the partial likelihood
- ~ L3 o '

estimates LT¥Y) of the @3 vectors. Having estimated the a ;'8 and

the vig's, we may write an estimate of the intensity matrix for a

hypothetical person with covariate vector =z as

§,4(tiz) = vij(O)(t;;) exp (3;; 2), it
G..(t;z) = - Z G..(t;z)
i jejei *
Because each vi;O) is a sum of delta functions, we have
Ao (3.13)
P(t,t;z) = Plu,, u,s=z)
. k k
k=k1

where as in section 2 the ¥, are the ordering of the tiin such that

Mgm1 ST € Mg Mg 1SSy

St<uy
1 k2+1

2
and for tijz = Uy P(uk, uk;z) is the identity matrix except for the
ith row which is given by

. 83)), Ai=%

exp (°‘ij£ exp (ui‘7

iizlu;, uk;z) - l-exp (';ijl exp (a;j z)), z-j'
2, otherwise (3.14)

These ideas are implemented in section 5 with an example. The




consistency, asymptotic variance and weak convergence of the in-

tegrated intensity matrix estimator

A F-M t ~ . .
aij (t,4,s) -.{ vij(t ,8) dt

are given in the next section.
4. CONSISTENCY OF THE INTEGRATED INTENSITY MATRIX ESTIMATOR

The notation used in this section is defined in Appendix A.

The (7,j) element of the integrated intensity matrix is defined by

t ” ”
Bij(t,A,z) = { vij(t ,2) dt (4.1)

From Section 2 the maximum likelihood estimator of (4.1) is

given by
o F-M tA(O) F-M 4 .
By (t,b,2) { Vi (t ,z)hij dt -
- —td
S B TR o8 Pigr
n.t.. . .
Agtjrft T 1Jr zatijr
for "itijr > 2 ,
(4.2)
= 0 for "itijr < 2

Aalen (1975) presents an estimator for Bij of the form

~ A t 2(o) A,,. .
B5(t,8,2) = JE 0oL At a) h;s dt

A 1,J
. h s
" aett s nitiinhige, (4.3)
-"ijr- ijr

Noting that for small z, 1n(l-x)=x, it can be intuitively seen

that the two estimators given by (4.2) and (4.3) respectively are

15




L nearly the same for large n In Appendix B, this point is used

it’
to prove the following: d .

Theorem 4.1

The maximum likelihood estimate B F'M(t,A,z) is consistent for

estimating B(t,A,z). i.e.,

= 0.

Plim | BFMii p,3) - Blt,b,2)

N+
Thus, the asymptotic properties ttft hold for B A also hold for
B F-¥ 1n particular we have

Theorem 4.2

4 F-M

N*w / 9; (s) dwij(a)

where Vij(s) is the Weiner process and | gij(s} d”ij(8) is a normal

process with independent increments and

o
v, .(s)
2 (a) = L]
Z I g “(=2) Pj,i(o,s,z) exp (azj z) dz
Ji‘%i = i’

Theorem 4.3

lim Var [V,-N- (Ei‘_’.F-M(t,A,z) - Bij(tpAaz))]

Noc
o
. j't \’.i(a) ds
4 2 I ga (z) P, ,.(0,3,3) || _exp (u j z2) d=z
i‘#i = J
S. ILLUSTRATION OF MULTIPLE TRANSITION ESTIMATION ;

In order to illustrate the use of these techiiques in the analysis

16




of data from an actual clinical trial, we have drawn data from a

comparison of two protocols for treatment of hepatic hemorrhage.

The sample consists of 89 patients who were admitted to a local
medical center with hepatic hemorrhaging which was in most cases a
complication of alcholic liver disease. The patients were randomized
into one of two treatment protocols. Patients in Group 1. received
the standard medical treatment for this disorder, which consists of
whole blood transfusion and antibiotics. Patients in Group 2 re-
ceived, in addition to the standard treatment, a porta-caval shunt
operation to route blood around the hemorrhaging portion of the liver.
There was a lag time between admission to the study and randomization
into treatment groups which ranged from 0 to 22 months. At the time
of randomization, a complete blood chemistry workup as well as a
disease history was taken. Demographic data for this clinical trial
are contained in Fertig, Murthy, et al (1979).

During the follow-up period occurrence times of several events
were noted. The relevant events for the purpose of this example are
death from hepatic hemorrhage, death from other cause, withdrawal re-
sulting in loss to follow-up, and a rise in blood bilirubin level
over 3mg. which was taken as an indicator of hepatitis onset. These

considerations define five mutually exclusive states:

State 1: Patient alive, no hepatitis since randomization.
State 2: Patient alive, hepatitis infection has occurred.
State 3: Dead from hepatic hemorrhage.

State 4: Dead from other causes.

State S: Withdrawing lost to follow-up.

v |




Since State 1 can never be reentered, and since states 3 through
S are absorbing states, the only allowable transitions are 1-2, 1-3,
1-4, 1-5, 2-3, 2-4, and 2-5. All patients entered the study in state
1.

The above classification of states represents a competing risk
model when there is the risk of dying from hepatic hemorrhaging and
the risk of dying from other causes. The primary interest in this
study is in the effect of treatment on}&he probability of dying from
hepatic hemorrhaging. Since the treatment for each of the patients
in this study involved whole blood transfusions, there was a large
incidence of hepatitis, the presence of which could alter the effec-
tiveness of the porta-caval shunt operation. Thus, it is important
to be able to estimate the effect of treatment on the 1-3 transition
intensity (no hepatitis =+ hepatic hemorrhage) separately from its
effect on the 2-3 intensity (hepatitis -+ hepat?c hemorrhage). The
multiple transition model presented in this paper allows for just
this separate estimation to be performed.

To this end, we define the first covariate, 8(1), such that

(1) (1)_

z ‘=0 for those patients undergoing standard treatment, and =z 2

for those patients undergoing a porta-caval shunt operation. For
illustrative purposes, we consider a second covariate, 3(2), defined
as 0 for those patients whose time to randomization was less than
the median time, and as 1 for those patients whose time to randomiza-
tion was greater than the median.

The total number of transitions for all 89 patients was 142, A

selected subset of these transitions, together with covariate

18
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information is presented in Table 1 below.

TABLE 1
Selected Events for Porta-Caval Shunt Clinical Trial

Treatment Lag Time

Event From To Covariate Covariate

Event Patient Time State State Value(z) Value(z)
F

No. I.D. (Weeks) T J 2 Ri(t

(2)’

1 33 0.286 1 4 1 1 {1,2,...,89}
2 69 0.571 1 2 0 0 {33}
3 75 0.714 1 4 1 0 {33,69}
4 69 2.000 2 3 0 0 {69}

70 47 84.286 2 4 1 0 {7,13,18,20,
23,29,31,47,
54,56,62,64,
70,72,76,80,
81,85}

139 12 476.143 1 5 1 1 {13,9,12}

140 9 522.143 1 5 1 0 {1,3,9}

141 1 523.428 1 5 1 0 {1,3}

142 3 525.857 1 5 1 1 {3}

Transitions {+5, i=1, 2 represent loss to follow-up. These tran-
sitions supply no information pertinent to the study of treatment
effect. State 5 is thus not treated as a competing risk. Rather, the
time that a patient undergoes in i+5 transition is the time he is
deleted from Ri(t) (the risk set of individuals who may undergo a
transition from state i). This is formally done by setting 8, 50=0

for all t, at which these transitions have occurred. 1In this case
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the matrix whose elements are defined by equation (3.14) reduces to

the identity, and the matrix of trafhsition probabilities remains un-
changed at time ¢,.

The raw estimates of the parameters uij were obtained by the
partial likelihood methods discussed in Section 3 and are displayed
in Table 2 along with their standard scores, obtained by dividing

each estimate by its estimated asymptotic standard error.

f
TABLE 2 ¢
Covariate Parameter Estimates
Treatment Effect a{:l.) Lag Time Effect a(z)
From To 1J 17
State State Estimate Est/S.E. Estimate Est/S.E.
1 2 -0.0139 -0.05 0.0486 0.17
1 3 -0 - 0.2432 0.33
1 4 0.0687 0.11 0.2837 0.46
2 3 -1.9088 -2.43 0.6218 1.07
2 4 0.8275 1.65 0.6937 1.55
The estimate of algz)s -=» resulted because all the, 1-3 transi-

tions (eight of them) occurred among pcople in the '"standard treat-
ment' group. The permutation test of the hypothesis that the eight
transitions are evenly distributed between the treatment and no treat-
ment groups rejects this hypothesis at the 0.01 significance level.
Using the techniques of Section 3, the matrix of transition
probabilities was estimated at each event time. For example, consider

Piq1,

the first event in Table 1. A patient with covariate = = (1,1) en- }
tered state 4 from state 1. From Table 2, we can compute «a 1

rd 8 -
1¢ "p1q;

0.3523. At the time of this event, all the patients were in




state 1, so all were at risk. The value of ] exp (a;4zp) for this

risk set is 107.283. The resulting’estimate of 8,41 from equation

(3.11) is ;141 = -1n (l-e 0.3523/107.283)/e0.3523

=0,008383. The
probability transition matrix, Pij(o’t3z) is the identity matrix for
t<t,,,=20.286. At t=20.286, it is updated according to equations

(3.13) and (3.14). For the case z2=(0,04, we see from (3.14), that

- -
0.9907 0 0 0.00934 0
,ﬁ 1 0 0 0
P(0,t152)=P(t], 8 ;2=(0,0)) = 0 ° 1! 0 0
0 0 0 1 0
0 0 0 0 1

L -

where the P14 element is given by 1 -[exp -0.009383 e u14z] which

reduces to 0.00934 for 2=(0,0).
As an illustration of the updated procedure, we consider the
event at time t(70)=84.286. Without specifying the details, we have

324t70=0.01987. From this we can compute Pij(t70’ t70;z) from

equation (3.13). The non identity portion of this matrix is

- °2
Poy(tsps t,pi2) = 1-exp [-0.01987 e %24° )= 0.01967 for

z2=(0,0) and P22(t7 t70;z) = 0.98033.

o.l
The updating of P(0,t;z) to t=t,, is done by noting

P(o,t70;z) = P(o,tsg;z) P(tsg,t70;z) P(t,o, t7o;z).

But P(teg, t;agz) = I, Thus, for a=(0,0),




[0.403  0.223  0.264 0.111 0 | |
0 +0 1 0 ]
P(0,t,,:2) - 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
) 0 0 0 0]
0  0.9803 0 0.0197 ©
. 0 0 1 0 0
0 o , o0 1 0
0 0 f 0 0 1
— -
0.403 0.218 0.264 0.115 0
0 0 1 0 0
= 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

where P(0,t g;z) is as indicated above.

6
We see from this, for example, that the probability a patient
with covariate value z=(0,0) remains in state 1 for t,0=84.3 weeks
is estimated as 0.403. Note that the fifth state, lost-to-follow-up,
has zero entry probability from states 1-4. This is a consequence
of setting a£5=0 for i=1,...,4, and is in keeping with the Kaplan-
Meier treatment of the censored state.
We present in Figures 1 and 2 plots of Pls(o’t‘z) and P14(0,t;z),
respectively for all values of . A literal interpretation of Figure
1 is that a person in the surgical treatment groups is much less

likely to die from hepatic hemorrhage, than a person in the standard

treatment group, which is the expected result. This large difference
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is primarily due to the infinite estimate for agé). - There is

essentially no difference that can ‘be attributed to lag time to
randomization.

From Figure 2 we see a person in the surgical group is much
more likely to eventually die from other causes than a person in the
non-treatment group. This apparent negative consequence of treatment
could easily be accounted for by the fact that those patients who
were not treated had a higher incidencs{of death from hepatic hemorr-
haging and thus were not available to die from "other causes". In-
spection of Table 2 indicated, however, a very marginal positive
a;i). Though not statistically significant, an agz) of 0.8275 is an

indication that treatment enhances the hazard of dying from other

causes.




FIGURE 1

! _ . Probability of death due to hepatic hemorrhage in the preseace of
8ll other causes of death versus time oa study.
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FIGURE 2

Probability of death due t> other csuses in the presence of all risks
of death versus time on study.
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APPENDIX A
Notation

A (o)
Vi,j(t’z) = vij

(t,a) exp (agj z3), it

S..(t,a) == V.. (t,a)
11

jajyi M

N : Total pool of patients.
;s Covariate parameter vector for i+J
Nij(t) : # of i+j transitions up to t.
z : Covariate vector
hij exp (o'ij z)
t.. rth Z-J transition.

ijr

iir Patient labelled pijr undergoing i-j transition.
n., : # of patients in R.(t).

1t i
R, (t) : {p/Up(t ) = 1}

‘s exp (a, 2 (t.. ))

ijr 1d pijr ijr

N

h.. : 2 - _ ., (Pl

it s, e pzl Iy, (¢7) = i) hy;

iir

(p) .
hij(t} : exp (aij zp(t))
z : Space of covariate vectors.
gi(z) : Multivariate distribution of covariates z for

patients entering state <.

Probability of entering state <.

S5
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APPENDIX B

Proof of Consistency and Weak Convergence

We will now prove the consistency of our estimator for the integrated
intensity matrix
t - -
B i(ts0,8) = { v;i(tia) dt (1)

Assuming the aij vectors are known, our estimate for (1) denoted by

B F'”(t,A,z) is given by

;

- - F-M
BT Mt 8,2) = [t vfo.)(t,‘z) h.. dt”
At ij iy
£ on. g
=1 ln 1~ tar ijr
A<t .. <t n. h..
iJr ztijr zgtijr
for n. > 2
it, .
ijr
= 0 for ney . S 2 (2)
ijr

We will prove the consistency of our estimator (2) for estimating (1)
by proving that our estimator is equivalent in probability to Aalen's
consistent estimator (1975) for estimating (1). Now Aalen's estimator
for estimating (1) is given by

24 _ [t S0 A,,. .

h..
= z 41i4,_ (3)
A<t .. <t n, h.
Jr ttiir  Htiin

We will now demonstrate that the difference between (2) and (3) will
converge to zero in probability. To simplify the proof we assume
the following:

Inf .
Ay : g = i,j,8c2 °XP (uij z) >0
A o = Sup exp (a3, 2) ¢ =
2 t,7,8€2 iJ
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linm

Az ¢ g P{nit>z,...,n8t>2,vo<Ast5T} = 1
. Sup (o) . - -
44 Pog,izez vij (t) exp (aij 2) = K < »

The proposition to be established is then given by the following
theorem and its proof.

Theorem: ,

w5 Ae,0,80 - B TN 0,2 l- 0
for all ¢ such that A<t<T. )‘ (4)
Proof:

For given €>0, §>0, in view of A3 choose NO{T) such that for N>N0(t)

P {n. >2,...,n8

it >2 Vt30<A5t5T} > 1-8§/2 - (5)

t

Now, for fixed ¢t with probability greater than 1-6/2 we have

l BA¢,0,2) - BT ¥e,n,2)
-h..
h.. h.. z—l'-'l
= I ) 2 - 1nf 1- rr_ ijr (6)
A<t.. <t n h.. n,. .o
h..r
By 4,,n;,>2 which implies LIE_ <1
n. h..
Zt":jr zﬂtiaor

Hence, the left hand side of (6) is dominated by

q-1
SAy F-M |, ;2 heg Pigr
T palk<t,. <t|q=2 T R9, nd

Ir tatijr ttijr
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<)

1
L 3 )
r3A5tijr5t q=2 ttijr
q
h.. o
-—5— 1 Iz (6+(n.e -1)1) (7
rajst, st q=2 U it in
Now there exists a constant A such tha:f
q
=2 J, 4 i)
2 = L, q © + (n,,-1)4
nis q=2 it
for Vnit>2.
In particular choose
2™ q
9
z 7/ q=0 q+2 0+ 4
We then have
~ ~ h.. A
'BA_BFM < ;.z 1
raAsti.rst nis
J ijr
. i, [t 1 an. . (el (8)
Py T et
8
where Nij(s) is a multivariate counting process with intensities
v()-{e (. 3,) T(U (s") = ) vi%(a) 7 (s) (9) ﬁ
t
and Myi(t) = N, .(t) - £ vyi(e) ds (10)
are orthogonal integrable martingales by Aalen's (1975) theorem 2.1 1

on page 14.
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‘( ) {vij(’)’"ia > 2
Let A..(8) = (11)
tJ 0. mgc2

Now, consider the random variable

t 1
g (a) = [ an..(s,w) (12)
1 2 1d
A "ia(m)
Since ’1 is positive, we have £

Plinm #,(w) = 0 if we can show that

N+o
1im
yow E(#i(w)) = 0
But
E(f,(w)) = E [* dN, (8,0
A n (w) J
18
A (s)
» o s
= [t B(—*—) ds (13)
A n.
18

t *
because M, ”ij(t) -£ lij(s) ds and [H(s,w) dMij(s’“) are square
integrable martigales for any simple process H(s,w) as defined by

Aalen (1975) on page 8.

We have N (v)
t - o
Mij(t) Hij(t) - { v£1 hij(s) I(U, (8" )=i) J (8) vij(s) ds

n. > 2
for is

= (0 otherwise; and
(14)

N
n,, = L I(U (87 )=i),
v=]

(v) 0
ij(t) Jv(t) vij{t)

N
* - »
A;5(t) < vgl I(U, (t™)=i) h
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(v)

< Max o -
22 3. sV hij(t) vij(t) vzl I(U, (t")=i)
= K n,
where K<o by A.4
Hence A‘
lim it lim K
Faco E ( 3 ) < N E ( - )
"it i1t
lim K{N 0
= we FGTTR (16)
1t
lim
- e K/N _ 0 -0
Plim (Lt ‘Lt it , eit
N+

Since eit>0 by A.3. Combining equations (8), (13), and (16) we finally
obtain that

ream | Bt,0,8) - BFMt,0,2) | = 0. (17)
In other words our estimate BF -M 1s asymptot1ca11y equivalent in proba-
bility to Aalen's (1975) estimate B (t,8,z2). But the consistency of
Aalen's estimate is established in proposition 8.1 on page 69 of his
thesis (1975) assuming that the risk sets grow large like N. There-
fore, we obtain

Theorem

AF'M(t A,z) defined by equation (2) is consistent for es-

timating 2(t,A,3) = f v, (a,z) ds.

oF-M

Weak Convergence and Asymptotic Variance of B (t,A,2)

From the martingale convergence theorem given on page 29 and the
theorem 8.2 on page 69 of Aalen (1975), we obtain that

— [oF=M

YN (Bij (t,A,8) - Bij(t,A,z))
> (18)
Foe ) gij(°) dwij(s)

31




r

where ¥.(s) is the Weiner process and | g;400) dW,;(s) is a normal
process with independent increments where

(v)
N ] U (s7)=i) R 509 v.j(n)
(.) - Plim vel
9:5 N+ fv) 2
( I I, (e )=i n, (.))
v=] -
0
Plim vygle/
N+e N (v)
I I(U (a7 )mi) hyils) / X (19)
V=]
But
Plim N - (v)
N+o vzz I(Y, (8" )=i) hij(') /N
- . (v)
-B((I(Uv(a )=i) hij(’))
- g. ,(z) P .; (0,8,3) || exp (a’.. 2) dz
J 32-7 “hi { J t i° tJ
(20)
Therefore,
o
v,.(s)
gfj(c) = 24 -
j§+i £ gj,(z) Pj,i(a,c,z) .'exp (uij z) dz
J
Hence the asymptotic variance of /F‘( Fj"(t A,z) - B, (t,A,z)))
is given by ‘
1% var [ﬂv‘ (353"(t,A,.) - Bia.(t,A,z))]
o
[t vij(') de 4
. -
§+t / gj.(s) Pyoy (0,0,8,) l! exp (aj; ) da .
‘ (21)
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Monte Carlo Comparison of Cox's Partisl vs. Total Likelihood

The performance of the maximum total likelihood estimate and the
Cox maximum partial likelihood estimate are compared using Monte Carlo
computer simulation techniques. A wide variety of different experimental
conditions, including those pertaining to an actual clinical trial, are
used to evaluate the effects of changes in basic parameters on the size
and power of three teats. The parameters considered include censoring
(presence or absence), the baseline hazard rate, the number of covari-
ates and their distributions, and the magnitude of the covariate effects.
Distributional data for the estimates of the covariate effects, includ-

ing confidence bounds for selected percentiles, are also given.

1. Introduction

In recent years much attention has been given to the problem of
accounting for covariate information in survival analysis of clinical
trials in which study participants may have been censored. Cox (1972)
addresses this situation by proposing the proportional hazard rate model:

k(t I !1,5) - )‘o(t) exp (B » 31] ’

where A(t | z, B) 1is the failure rate (bazard function) for the i-th

patient, =z, 1is the covariate vector for that patient, and B is the

i
vector representing the effect of the covariates. ko(t) 1s an arditrary
function representing the baseline failure rate -- the failure rate for a
patient with covariate vector L - 0. The survival function, S8(t | L7 8)

and the failure density function f£(t | 5 8) are then given by

8(t | s,,8) ..{j: ki(xlzi,a)dx} - cxp-{cxp (e* s,) fot lo(x)dx}




r(tlz, ,8) = Mtlzi »8) s(tlz,,8)
, t .
= Ny(t) exp ib' z, - exp (B' z,) fo )‘o(")d"‘j ’

respectively.
Much analysis has been done in the exponential case where

0
A (t) = e O (Glasser, 967), Sprott and Kalbfleisch (1969), Breslov

(1572) and Prentice (1973)). Simple departures from the constant

hazard model are accomidated using the Weibull model where A,(t) =

°o+°1 Int *
e (Prentice, 1973). When the concern is chiefly to esti-

mate the covariate effects, Cox's partial likelihood (Cox, 1975) is
attractive, for it ignores the formulation of A,(t). Oakes (1977) )
and Efron (1977) establish conditions under which the partial likeli-
hood is asymptotically fully efficient, and show that under many
circumstances of interest, the partial likelihood suffers little loss
of efficiency. In an important recent work in this area, Lindsey
(1980) proposes the mixture model as a tool for evaluating the maxi-
mum partial likelihood estimates in the covariate case, and gives
conditions under which it is fully efficient within that model, as
well as providing a lower bound for the asymptotic variance in those
cases. Peace and Flora (1978) aia important work on the effectiveness
of various tests in the small sample situation, using Monte Carlo
methods to compere the size and power of tests based on Cox's maxi-
wum partial likelihood estimate (MPLE), £, and the maximm total




lilelihood estimate (MTLE), £, of B, for the above models in an
experimental situation. In this paper we expend and refine their

work. We compare the performance of the partial and total likelihoods,
using three test statistics based, respectively, upon the asymptotic
normality (AR) of £, the likelihood ratio (IR) criterion, and

the asymptotic normality of the gradient of the likelihood function

(DLOGL) evaluated at the null hypothesis. The baseline hazard )\o(t) is
parametrized using zero, one and two of the nuisance parameters ¢ 4 respect.

ively. The test statistics are compared based on the partial likelihood,
the exponential total likelihood, and the Weibull total likelihood.

Our results are divided into parts. In the first part, we
consider an experiment in which a single covariate takes the values
zero and one. We explore the size and power characteristics of the -
LR, AN and DLOGL tests for the MPLE, the exponential MTLE, and
the Weibull MTLE, and how they change due to censoring or variations
in the mull hypothesis, the sample size, or the covariate distribu-
tion. In the second part, we look at the distribution of £ under
these circumstances. In part three, the performance of the various
tests is evaluated in a clinical situation, using the coveriate
distributions and censoring patterns found in a clinical data dbase.

2. Test Statistics

Let [till:.-:l. denote the termination times for the N test

-35.
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participants and {x:l}!:-l be an indicator varisble vhere x, = O

if the participent was censored, and x; = ] if the termination was

a failure. The log of the total likelihood is then given by:

N
log Iy = ) (x 1n%(e,) + 1n Stz , 8))
L=1

and the log of the Cox partial likelihood is given bdby:

log L, = i xi(ﬁ' z, - 1n 2 eB'zd)

i=1 JcR(ti)

where R(ti) is the set of participants st risk at time t, . Using
a modified Newton-Raphson technique, the estimates of 5 and & were
found, both under the null hypothesis and the alternative. Under cer-

tain regularity conditions we have, as N —» =,

(1) 2l10g L(,) - 108 L(A)) —— X, ,

(6-3) — %

-1
() -5 (8- 8" [%25%5}:]

220 g 7
21081 |' | F B
1 log L log L
o g [ [ dam) g,
¢}

o)

vhere k 1is the number of parameters being tested under the null




hypothesis. Here, p 1s the vector of cambined paramccers

b = (ﬂbe) = (Bl’EZ’“"bk"“’bn’ol’""on)

where © parameterizes )\o(t). The hat on p refers to the maxi-
mum likelihood estimate of o and the zero subscript refers to the
maximum likelihood estimate under a specified null hypothesis. Thus,

if the hypothesis is:

versus
K:p, fB,, forsome i, 1<1ic<K

then

80 = (alo’...’bm’s(hl)O’.”'BnO"olO’""omo)

vhere p(k+1 Yo? * "’no’°1o' oo -,le are the maximum likelihood esti-

mates of these parameters ‘under Ho.

3. The Simulation

Each experimental run consisted of the generation and analysis
of 1000 samples. The survival times were generated randomly,
according to the formula

~

-fz
t, = S-l(re 1‘|z-'('),ﬂ*-0)
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vhere S 2(-|z =0,p =0) is the inverse of the survival functiecn,
taken wvhen £ =0 and z = O. The quantity S is the true value of

1l

B for the simulation and S~ is generated tabularly with r taken

from the uniform (0, 1) random number generator;

vhere
ni = (ni'l * 6”, 360 , 016) mod (231 - 1) .
As for the data from an active clinical trial, data was taken

from the Western and Southeastern Cancer Study Groups' breast cancer i

studies. Three covariates were chosen:

Z, - treatment type (65.3% zeros, 34.7% ones) , !
Z, - years (y) free from cancer prior to entering study ,

=0 if 0<y<1 (¥5.2%)

=1 if 1<y<5 (b5.2%)

=2 1if 5<y ( 9.6%)

Z‘s = 0 1if liver metastases absent at entry (57.6%) ,

= 1 4if liver metastases present at entry (L2.4¥) .

Two additional covariates were defined to measure interaction

effects:

Z5 = (1-25)(1-z1) and 2, = (1-23)21




vhich were present in the following proportions:

ﬁ Z} Zh Percent
0 (o] 0 18.1
(o] 1 0 10.5
1l 0 0 24.3
1 0 1l k7.1

The partial likelihood estimate of B over the breast cancer i
study is p* = (0.47209, -0.34805, -0.26766 , -0.44233) when
(zl,zz,zyzh) is the covariate vector. OF = («6.1TT1) 4is the
nuisance perameter estimate under the exponential model, and O’E =
(-6.9318, 0.13988) is the estimate under the Weibull model.

The method of censoring is also derived from the data base.
The Kaplan-Meier (K-M), or product limit estimate of the censoring
distribution for the data was computed and stored in tabular form.
It is displayed in Figure 1. A random censoring time was evaluated
for each study pa.rticipmi according to this distribution and, if it
was less than the survival time for that participant, the survival
time was replaced by the censoring time and the participant was con-
sidered to have been censored. This is a time dependent, and
therefore, covariate dependent form of censoring. The effects of
this type of censoring on different covariate combinations are

discussed later in the paper.
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Tadbles 1 and 2 show the results of a set of ninety similation
runs for & model with one covariste, z, ¢ {0,1). In the exponen-
tial case & = (0.0) for rows 1-6 of each table and O = Of for
rows 7-9. In the Weibull case, & = (1.0579,1.0) in rows 1-6
and 0 =@ inrows 7-9. In the Appendix herein we show that the
value of @ has, in the absence of censoring, no bearing on the value
of £ 1in either the exponential or the Weibull models. In lines 1-7,

z. is chosen without replacement from a population of size N, con-

1
taining half zeros and half ones. In line 8, z, is chosen with

replacement from the same population. In line 9, z, is chosen with
replacement from its empirical distribution in the clinical trial data

b“e . e P

In the first three lines of each table, we see the effects on
the test statistics (under Ho :8 = 0) of variations in the sample
size in the absence of censoring. Power curves corresponding to the
DLOGL test are chosen for visual comparison and are disjplayed in
Figures 2 and 3. Upon inspection of either the tables or the graphs,
it becomes immediately evident that the partial likelihood is much
less powerful than either of the total likelihoods for R = 10. The
AR test performs very poorly under the partial likelihood, the LR
test does better, and the DLOGL test is best of m{ though it still
falls well short of the same test in the total likelihood analysis.
On the other hand, the tests in the total likelihood analysis are

very similar to each other, although the DLOGL test still appears
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t0 be somevhat more powerful.

Comparing the sizes ot the tests, we observe those based on
the Weibull model are very biased. Using the Kolmogorov-Smirnov
(X-5) confidence intervals we reject the hypothesis with 95%
confidence that any of them are truly *’il)- A representative plot,
using the DLOGL test is given in Figure 7. Under the partial like-
lihood, the DLOGL test is again not ’%1)' though the deviation is
not so great, as is seen in Figures L4 and 6. The L.R. test appears
to be 73(1) and the AN test is borderline; falling the K-S test
and passing it once. The tests based on the exponential model appear

to be i(l).

When N =20, the partial likelihood compares better ageinst
both of the total likelihoods. The various tests based on the partial-
likelihood are much closer to each other in power, and much closer to
the corresponding test in either of the total likelihoods. The sizes
of the various tests are stabilizing as well, although the tests

based on the Weibull nodei are still rather far from Xz(l )

By the time N = 40, the irregularities are all smoothed out,
almost down to random fluctuations. The tests are now almost close

to ) and the powers differ only slightly between tests under a

(1
given model. The partial likelihood is now competing we.l against
both the exponential and Weibull total likelihoods. The DLOGL test
still appears to be the strongest test in all cases, and while the
AN test appears to be slightly stronger than the L.R. test in the

total likelihoods, the two tests are almost indistinguishadle in the

olila
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partial likelihood, with perbaps a slight preference going to the
L.R. test.

Lines 4 -6 in Tables 1 and 2 give results for experiments
identical to those above, except that they correspond to testing
By:8, =1 sgainst H :p, # 1. An immediate observatiom is that
for N =10 the L.R. and AN tests have no power at all against
Bl > 1. This is AQue to the clustering of the covaristes, so that
all of the members with z, = 1 fail before any of the members with
" O. Under these circumstances, the MPLE of £ is infinite
under the alternative hypothesis and the analysis fails to converge.
Our program had no.means of dealing with these cases, except to
throw them out, which, of course, seriocusly weakened these tests when
it bappened fregquently; namely, when £ was large and N was small.
The DLOGL test computes the MFLE only under the null hypothesis,
therefore, it was unaffected by this problem. Ewen so, it too was
asymetric in pl around 1, DbYeing more powerful against pl <1
and less powerful sgainst. "1 > 1. This bias is characteristic of
the tests based on the partial likelihood, being evident for N = 20,
4O as well, with the L.R. test being least affected by it. On the
other hand, the tests based on the exponential total likelihood are
not visidly affected by the change in Ho, apart from randoa fluctu-
ations, just as they did dbefore. Tests based on the Weibull total
likelihood showed a moderate asymetry, again with the L.R. test
being relatively less affected than the others. The partial likeli.
hood is nearly as strong as the Weibull total likelihood on the left,
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though significantly less strong on the right, vhiie the Weidull is

weaker than the exponential at all points.

Line 7 in Tables 1 and 2 is identical to line 3, except that
censoring is imposed using the K-M estimate of the censoring dis-
tridbution of the clinical trial, as described in the previous section.
When 2, =0, the censoring probability is 128 for all values of

£; the censoring probadbility for z. =1 varies with f as shown

1
in Table 3. The tests all lose power due to the censoring, more so
vhere E < 0, due to the greater probability of a sample member

being censored, than where f > O.

Within each model the tests retain the same relative strengths.
Tests based upon the Weibull MTLE suffered relatively less loss of
power than the tests based on partial and exponential total likeli-
hoods. This is, perhaps, due to the effect of time-varying hazard
rate on the censoring distribution. Examining line 8 where the co-
variates are selected with replacement and line 3 where they are
selected without replacecent, we cbserve essentially no effect on
either the power or size calculations. However, the additional
change of the covariate distribution vhich was affected in line 9
has greater influence. The various tests are veakened, dut not uni-
formly so. The L.R. test 1s weakened more on the right than on
the left, while the AN and DLOGL tests are weakened more on the
left than on the right. The bias of the L.R. test is observadle
on all of thé models, but the bias of the AN and DLOGL tests is
evident only on the MPLE and the Weidbull MTLE.
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3.2 Results - Part 2

Tables 4 and 5 give scaled confidence intervals for selected
percentiles of £ when N = L0, under conditions similar to those
mentioned in Fart 1. Al)l of the values have been standardized by
subtracting the median and dividing by a scaling factor equal to
the interquartile range, divided by 1.349 (the interquartile range

for the normal distribution with o - 1).

Deviations from normality occur sporadically throughout and
are attributadble, in many cases, to chance fluctuations. However,
vhen £ = (1.0), we see 2 more pronounced trend avay from normality
among the MPLE and the Weibull MILE. The right tails of the dis-
tributions are generally heavier and, in the Weibull MILE, <the
median is bilased high. However, these changes are not discernable

in the exponential MTLE.

3.3 Results - Part 3

Table 6 gives the results of tests patterned after the data
taken from the breast cancer data base mentioned previously. Samples
of size 40, 60 and 100, were taken with replacement from the data
base itself and analyzed both for size at £ =0 and power at £ = p»
(restricted to the nmumber of covariates being analyzed) against the
null hypothesis that f = O. The covariate vectors used are (zl),
(z1 ’ 1.2) and (zl )% 0 235 'h)’ with the distribution of the terms
given in Section 3. In the exponential case § = Of and in the

Weibull case & = o .
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The performance of the partial likelihood in the ome-covariate

case is nearly indistinguishable from the performance of the total

likelihoods, either with censoring or without. The DLOGL test is
the most powerful test throughout, while reteaining good size charac-
teristics, and the L.R. test is the least powerful. Censoring has
& minor impact on the power of the tests, but in this situation has
no effect on their relative power. Even at N = 100, the tests are
clearly not powerful enough to decide against Ho :f =0; larger

samples are obviously required.

With two covariates, the tests are somewhat more powerful,
but unchanged in relationship to each other. Censoring has less ef-
fect in this case because B; < 0, which reduces the probadbility of

censoring for many sample members. -

The four-covariate case is not strictly comparable with the
other cases due to the interdependence of the covariates. This can
be seen in the power of the vari~us tests, which is lower than in the
tvo-covariate case dbecause the combined effects of z, snd z,

nearly cancel each other, occurring 47.1% of the time.

The size of the DLOGL test, and, to a lesser extent the AN
test, are severely affected, especially wvhen KN = LO. Whether this
is attridbutadle to the interdependence of the covariate values, or
wvhether it is simply due to the large number of covariates and their
distribution taken independently of each other, remains to be tested,

although the latter appears likely.
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4. Computational Note .

The program which generated these results was written in
Fortran IV and run on & FDP 11/34k with g6k of core. Run time for
each simulation varied from about 45 minutes to over 20 hours
of CFU time, depending on the complexity of the analysis. Well
over a thousand CPU hours were required from program development and
similation run time. The authors wish to thank the Department of
Obstetrics and Gynecology at Cedars-Sinai Medical Center, Los
Angeles, California for the free use of their computer for this
enormous usage of computer time. This work would have been impossible

without their generous aid.

5. Appendix

Here, we show that when the covariates are time-independent
and censoring is absent, then the MILE of # is independent of @
in the exponential and Weibull models.

Consider first the Weibull model,
ko(t|oo,ol) = exp (0,+ 0, 1nt) .

1l

Reparametrize as follows:
°
3'Gﬂ<q+—1) and b-ol-'-l 1

to get
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Aftla,b) = ant®l |

Now, suppose ¢ arises from the distribution:

b
F(tllal,bl) = ] - exp- [cltll exp (B* 2)] .

b
If (a,b) = (a,b,), then t, = t, such tnat ultll -

n,ztzz « RNow,

.F[ bl-l bl .
L(tl|ll.b1) = ] [lel,tl_ explp' z, - at,y exp (s zi)]] ’
1=]

where tu and zy belong to the i-th member of & study of size

2 1n L(t,la, , b,)

—
J

3

b
-53- i [1n (a;b,)- (b, -1) 1n tﬁ exp (B' 2,)]
il

) e
- [zij -zyy8 ty ex (B zi) .
i=1

Since the likelihood is maximized when s, - i, b:l. - 91, and

ﬂ"lo




-~ 61
2y = z2g4 &) t)) exp (61 zi) .

i=) i=]

Substituting in

glves
- b )
i 21 " i [ I/bl] ™ o B 2) .
i=1 i=]

We now have the following identities:

g - (2 /0

B,b
2
LI '

£ =6

The results for the exponential case may be seen as & special

case of the above proof, where b, = 61 =, = Gz =1,
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K .
Test :

legend for Tables

value of B under null hypothesis

true value of §

method of selecting covariate values, l.e.,

F - without replacement from a group of size N
containing half zeros and half ones

R - same as F except with replacement

E - with replacement fram the values of 2z, <taken

1
from the data base

whether censoring is imposed - Y = yes and N = no

sample size

L - 1ikelihood ratio ( LR ) test

A - asymptotic normality (AN) of £ test

D - asymptotic normality of gradient (DLOGL) test
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Partial  Expomential Fartial Weibull
Cov | Cen | N Test [} P s P s P s P
& N 4o L | 6.5 3.0 5.0 33.5 5.5 31.0 6.0 35.5
13 A 7.0 3.0 6.0 36.0 7.0 R.5 7.5 38.5
D | 10.0 37.0 8.5 k1.0 9.0 38.0 1.0 u43.5
, 60 L 7.5 4.0 5.0 U3.5 5.5 45.0 7.0 u48.0
.1k A 7.5 4.0 6.0 k8.0 6.0 k6.0 8.5 51.5
D 9.0 U47.5 7.5 51.0 7.6 50.5 9.5 5L.0 1
100 L 5.0 68.0 L.s TN.0 6.0 69.0 7.0 7.0 ‘
15 A 6.0 68.5 6.0 T3.0 6.5 T0.0 70 T2.5 ,
D 6.5 TL.0 6.0 Th.5 7.0 TA.0 8.5 T&.0 |
'Y Y 40 L 7.0 25.5 5.5 28.5 7.0 26.5 8.5 30.5
16 A 7.5 27.0 7.5 31.0 7.0 27.0 10.5 3.0
D 10.0 3.0 9.5 3.5 10.5 33.0 13.7 37.5
60 L 7.5 36.5 7.5 37.0 7.0 35.5 8.0 %0.0
17 A 8.0 38.0 8.0 Lo.0 7.0 37.0 8.0 k2.5
D | 10.0 4.0 10.0 Uu3.5 8.0 4.5 9.5 k7.0
100 L 5.0 58.5 L.5 60.0 5.5 60.0 6.0 63.0
18 A 5.0 59.5 5.0 62.0 6.5 60.0 6.5 63.5
D 6.0 62.0 5.5 64.0 7.5 6.5 7.5 65.5
Tabdble 6
(Continued)
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Figure 1.
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